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Glutathione (GSH) deficits have been observed in several mental or degenerative illness,

and so has the metabolic syndrome. The impact of a decreased glucose metabolism on

the GSH system is well-known, but the effect of decreased GSH levels on the energy

metabolism is unclear. The aim of the present study was to investigate the sensitivity to

insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine

ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT)

mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels.

During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia,

indicating normal insulin secretion. However, during the recovery phase, plasma glucose

levels remained lower for longer in KO mice despite normal plasma glucagon levels.

This is consistent with a normal counterregulatory hormonal response but impaired

mobilization of glucose from endogenous stores. Following a resident-intruder stress,

during which stress hormones mobilize glucose from hepatic glycogen stores, KO

mice showed a lower hyperglycemic level despite higher plasma cortisol levels when

compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO

mice could explain the impaired glycogen mobilization following induced hypoglycemia.

Altogether, our results indicate that reduced liver glycogen availability, as observed in

GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia.

Further studies will be necessary to understand how a GSH deficit, typically observed in

GCLM-KO mice, leads to a deficit in liver glycogen storage.

Keywords: glutathione, GCLM knockout, glycogen, insulin, glycemia, resident-intruder stress, cortisol

Abbreviations: CORT, corticosterone; GCLC, glutamate cysteine ligase catalytic subunit; GCLM, glutamate cysteine ligase
modulatory subunit; GSSG, oxidized glutathione; HPA, hypothalamopituitary-adrenal; ITT, Insulin tolerance test; NADPH,
nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species.
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INTRODUCTION

Deficits in glutathione, a major regulator of reactive
oxygen species (ROS) levels, have been observed in several
neurodegenerative disorders including Alzheimer’s, Parkinson’s,
and Huntington’s diseases (For reviews see Dringen and
Hirrlinger, 2003; Ballatori et al., 2009), as well as in psychiatric
illnesses, such as major depressive and bipolar disorders
(Gawryluk et al., 2011), and schizophrenia (Yao et al., 2006;
Do et al., 2009a,b; Gawryluk et al., 2011). Mental illnesses have
repeatedly been associated with the metabolic syndrome (For
reviews see Henderson et al., 2015; Vancampfort et al., 2015;
Xu et al., 2015), and excess levels of ROS may contribute to the
development of those pathologies that have reached epidemic
proportions, such as atherosclerosis and Diabetes Mellitus (For
a review see Santilli et al., 2015). Therefore, understanding
the impact of a chronic glutathione (GSH) deficit on energy
metabolism has important clinical implications.

Glucose serves as the principal source of energy in the body.
This monosaccharide can be metabolized via two pathways,
the glycolysis and the pentose phosphate pathway. Glucose
metabolism through the glycolysis pathway is usually followed
by the tricarboxylic acid cycle yielding 30 to 36 ATP per
glucose (For a review on energy metabolism see Allaman and
Magistretti, 2013). Side products of this important energy-
generating pathway are reactive oxygen species (For a review see
Quijano et al., 2015). ROS are free radical atoms or molecules
with an unpaired electron that renders them highly reactive.

Free radicals are essential in several biochemical processes
including the regulation of insulin sensitivity and glucose
homeostasis (For a review see Bisbal et al., 2010). However, if
ROS levels become too high, they can induce significant damage
to proteins, membranes and DNA (Halliwell and Chirico, 1993;
Halliwell, 1999). The major cellular antioxidant and redox
regulator in living cells is the tripeptide glutathione (Orlowski
and Karkowsky, 1976; Meister and Anderson, 1983; Dringen,
2000; Hammond et al., 2001). GSH is needed for the reduction of
reactive glycolysis by-products. It is also known that low glucose
availability is accompanied by severe redox imbalance, partially
due to the fact that themetabolism of glucose through the pentose
phosphate pathway produces the NADPH necessary to maintain
a proper GSH/GSSG redox balance (Pias and Aw, 2002; Tang
et al., 2015). Thus, there is a tight link between the GSH system
and glucose metabolism.

However, the way a primary GSH deficit can impact on
glucose metabolic pathways remains unclear. The effects of
oxidative stress and elevated free radicals on glucose metabolism
have so far mainly been studied in the context of obesity and
diabetes. These studies have demonstrated that high-fat diet
and obesity lead to excessive production of ROS, which in
turn contribute to insulin resistance (for reviews see Bashan
et al., 2009; Bisbal et al., 2010). Moreover, a lower GSH/GSSG
ratio and associated oxidative stress have been demonstrated
to precede an increase in insulin resistance and impairment in
glucose homeostasis (Paolisso et al., 1992; Nwose et al., 2006).
In contrast, a study using GSH peroxidase knockout mice, which
are characterized by redox imbalance and increased ROS levels,

resulted in enhanced insulin sensitivity in these animals (Loh
et al., 2009). The contribution of a GSH dysregulation in insulin
resistance remains unclear.

A valuable model to study the effect of a chronic GSH deficit
and the consequent chronic vulnerability to oxidative stress is
the mouse knockout (KO) for the modulatory subunit of the
glutamate cysteine ligase (GCLM), the rate-limiting enzyme of
GSH synthesis (Yang et al., 2002; Lavoie et al., 2009; Steullet et al.,
2010). These mice present with severe and chronic GSH deficit
of 80% and more in liver, lung, kidney, pancreas, and plasma
(Yang et al., 2002; McConnachie et al., 2007), as well as in brain
(McConnachie et al., 2007; Steullet et al., 2010) and brain cells
(Giordano et al., 2006; Lavoie et al., 2009). GCLM-KO mice also
show increased oxidative stress markers levels (Kendig et al.,
2011). Kendig et al. (2011) have demonstrated that GCLM-KO
mice fed a high fat diet, are protected against the development of
diet-induced obesity, glucose intolerance, and insulin resistance
(as assessed by the HOMA-IR index, i.e., the product of fasted
insulinemia X glycemia). Under normal chow feeding, GCLM-
KO mice showed a normal HOMA-IR index, suggesting normal
insulin sensitivity although this was not formally confirmed with
tests assessing insulin sensitivity.

The present study therefore aimed to investigate the sensitivity
to insulin in the GCLM-KO mouse. We hypothesized that under
normal chow feeding, GCLM-KO mice would present with
normal insulin sensitivity. Basal plasma glucose and insulin were
measured, and insulin tolerance tests were performed. Based on
the results obtained, exploratory experiments were conducting
during which the counterregulatory hormone glucagon was
measured as well and hepatic glycogen stocks. The glucose
response to an acute resident-intruder stress was also assessed.

MATERIALS AND METHODS

Animals
GCLM-KO mice, back crossed with C57BL/6J mice over more
than 10 generations, were kindly provided by Timothy P. Dalton
and Ying Chen (Center for Environmental Genetics, Cincinnati,
OH, USA; Yang et al., 2002). Male mice used for the present
study were bred in the local animal facility under normal 12:12-h
light/dark cycle. Mice were gently handled daily for 1 week prior
to experiments in order to habituate them to manipulation and
minimize the stress induced by handling/manipulation during
injections and blood collections. All experiments were performed
in accordance with the guidelines outlined in the Guide for the
Care and Use of Laboratory Animals (National Research Council)
and were approved by the Consumer and Veterinary Affairs
Services of the Canton Vaud, Switzerland.

Material
Unless otherwise stated, all chemicals were purchased from
Sigma-Aldrich (St-Louis, MO, USA).

Methods
Before all experiments, WT and KO mice were single-housed
overnight for 16 h and food-restricted during the last 4 h in
order to reach a stable glycemic state. Samples were collected
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during the animals’ light phase between 12:00 and 14:00 h for all
experiments.

Basal Plasma Glucose Levels
Blood samples were obtained from tail-tip bleedings for
immediate glycemia measurements with a glucometer (Ascensia
Breeze2, Bayer AG, Leverkusen, Germany).

Basal Plasma Insulin Levels
With the tail nick procedure, blood was collected withMicrovette
capillary tubes EDTA-2Na (Sarstedt, Nümbrecht, Germany).
Blood was then immediately centrifuged (4◦C, 10000 rpm,
15min) and the plasmawas frozen at−20◦Cuntil measurements.
Insulin levels were quantified with a commercially available
Insulin enzyme immunoassay kit (Alpco Immunoassays, Salem,
NH, USA).

Insulin Tolerance Test
Mice were i.p.-injected with insulin (0.5 U/kg, diluted in
BSA 0.5%; Actrapid, Novo Nordisk Pharma SA, Küsnacht,
Switzerland) at around 13:00 (corresponding to 4-h fasting).
Blood samples were obtained from tail-tip bleedings at the
time of injection (time = 0) and 15, 30, 60, 90, and 120min
after injection. Plasma glucose levels were measured with a
glucometer.

Plasma Glucagon Levels
Since large blood quantities (at least 100µl of plasma) were
necessary for glucagon measurements, animals were decapitated
and trunk blood was collected with Microvette capillary tubes
EDTA-2Na, to which Aprotinin was added, and was immediately
centrifuged (4◦C, 10000 rpm, 15min). Plasma extracted was
immediately frozen at −80◦C and subsequently unfrozen for
glucagon levels measurements with the Glucagon enzyme
immunoassay kit (Alpco Immunoassays, Salem, NH, USA).

Hepatic Glycogen Levels
Mice were decapitated. The liver was rapidly extracted,
immediately frozen on carbon dioxide ice and then kept
at −80◦C. For glycogen measurements, frozen samples were
placed into Eppendorf tubes and weighed before NaOH 0.1M
was added to stop enzyme activity. Samples were homogenized
on ice and a 50−µl aliquot was used to measure the protein
content using the BCA protein assay reagent kit (Pierce,
Rockford, IL, USA). Tubes were then centrifuged at 14000 g
for 10min and the supernatant was used for glycogen dosage
following a previously described procedure (Allaman et al., 2010).
In a first 100-µl aliquot, 300µl of sodium-acetate buffer (0.1
M, pH 4.6) was added. In the second one, 300µl of the same
buffer containing 1% (v/v) of amyloglucosidase (10mg/ml; Roche
Diagnostics, Rothkreuz, Switzerland) was added. Aliquots were
incubated at room temperature (RT) for 30min. Then, 2ml of
Tris-HCl buffer (0.1M; pH 8.1; MgCl2 3.3mM, ATP 0.2mM,
NADP 30µM, containing 0.7 U/ml of hexokinase, and 0.35 U/ml
of glucose 6-phosphate dehydrogenase (Roche Diagnostics))
were added, and the mixture was incubated at RT for 30min.
Fluorescence associated with the NADPH formed was then read
on a fluorimeter (excitation: 340 nm; emission: 450 nm) after

calibration with an appropriate standard curve using glucose
as standard. The first aliquot gives the sum of glucose and
glucose 6-phosphate, and the second gives the sum of glycogen,
glucose, and glucose-6-phosphate; the amount of glycogen was
determined by subtracting the result obtained from the first
aliquot from the result obtained from the second aliquot. Results
are presented in nmol glycogen permg of protein, one mole of
glycogen corresponding to one mole of glycosyl units originating
from glycogen.

Resident-Intruder Stress
An adapted version of the resident-intruder paradigm (Martinez
et al., 1998; Heinrichs and Koob, 2005) was used to induce stress 1
month after the ITT. For the stress procedure, a weight-matched
white OF1 (Charles River, L’Arbresle, France) intruder mouse
was placed into the cage of the black WT or GCLM-KO resident
for a period of 30min. Plasma glucose levels were measured
immediately before and after the stress.

Plasma corticosterone (CORT) levels were measured before
the resident-intruder stress, immediately after the stress and
60min after to assess the hormonal response immediately after
the stress and during the remission period. Between 20 and 30µl
of blood was sampled using the tail-nick procedure and collected
with a lithium-heparin coated capillary tube (Microvette CB
300, Sarstedt, Nuembrecht, Germany). Blood samples were
centrifuged (4◦C, 4000 rpm, 15min) before plasma was extracted
and stored at−20◦Cuntil further processing. Bloodwas unfrozen
for CORT levels measurements using the Corticosterone enzyme
immunoassay kit (Assay Designs, Ann Arbor, MI, USA).

Statistical Analyses
Statistical analyses were performed using SPSS Statistics 17.0
(Chicago, IL, USA). For comparisons between WT and KO, the
t-test for independent samples was used. Significant probability
level was set to p ≤ 0.05. For the ITT, because multiple
measurements were taken overtime, repeated-measure ANOVAs
with Time as within-subject factor and Genotype as between
factor were performed. The effect of time was then assessed with
paired-samples t-test between each time point and time = 0,
and the Bonferroni correction for multiple comparisons was
used. The effect of genotype was assessed with t-tests for
independent samples at each time point, also Bonferroni-
corrected for multiple comparisons. CORT levels measured
60min after the end of stress were not distributed normally,
so the non-parametric Mann–Whitney test for independent
samples was used to compare between genotypes at this time
point and the Wilcoxon signed-rank test was used to assess the
difference within each genotype over time.

RESULTS

Lower Basal Plasma Glucose and Insulin
Levels in GCLM-KO Mice
To establish the basal experimental condition, plasma glucose
and insulin levels were measured in both GCLM-KO and –WT
mice.
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Following 4-h food deprivation, both plasma glucose and
insulin levels were lower in GCLM-KO mice compared to
WT (−9.9%, p = 0.015; −56.4%, p = 0.01, respectively;
Figure 1). We reasoned that this might be due to either a
primary hypoglycemia with a secondary hypoinsulinemia, and/or
a primary action of insulin to more efficiently lower glycemia.
In order to assess this last hypothesis, and to verify our primary
hypothesis that insulin tolerance is normal in GLCM-KO mice,
we assessed insulin action by an insulin tolerance test.

Normal Insulin Sensitivity but Delayed
Recovery from Insulin-Induced
Hypoglycemia in GCLM-KO Mice
At the time of the insulin tolerance test (ITT) 3 months-old
GLCM-KO males were lighter than WT (23.8 ± 0.4 and 26.8 ±

0.4 g respectively;−13%; p < 0.001).
Figure 2 shows that, as seen previously in Figure 1, basal

glycemia (time = 0) tended to be lower in GCLM-KO mice (raw
p-value = 0.023, although it did not reach statistical significance
when Bonferroni-corrected for multiple measures in this test).
Repeated-measure ANOVA showed a significant within-subject
effect of time [F(5, 17) = 93.229; p < 0.001], and a significant
interaction between Time and Genotype [F(1) = 3.559;
p = 0.008]. Specifically, The insulin bolus decreased plasma
glucose to a similar extent in both WT and GCLM-KO mice
up to 30min post-bolus, suggesting that GCLM-KO mice
have normal insulin sensitivity. However, during the phase of
recovery from hypoglycemia, plasma glucose levels remained
significantly lower in GCLM-KO mice compared to WT at times
60min (−27.9%; p = 0.001), 90min (−44.6%; p = 0.001),
and 120min (−41.2%; p = 0.004) post-insulin-injection. These
results are suggestive of an impaired counterregulation in
KO mice. To investigate this hypothesis, levels of glucagon,
the major participant in the counterregulation, were
measured.

FIGURE 1 | Lower basal plasma glucose and insulin levels in GCLM-KO

mice compared to WT mice. Data are expressed as mean ± SD. *p < 0.05;

**p < 0.01.

Normal Plasma Levels of the
Counterregulatory Hormone Glucagon
Sixty minutes after insulin injection, at the time when
glucose levels started to increase back to basal levels in WT
mice (Figure 2), plasma glucagon levels were not significantly
different between WT and KO mice (Figure 3). In absence
of counterregulatory defect at the hormonal level, the delayed
recovery from insulin-induced hypoglycemia could be due to an
inability to mobilize glucose from endogenous stores. To assess
this hypothesis, another glucose-mobilizing paradigm was tested,
i.e., acute stress-induced hyperglycemia where stress hormones
such as corticosterone mediate the mobilization of glucose from
hepatic glycogen.

Lower Glycemic Levels in Response to
Acute Social Stress Despite Higher CORT
Response
The acute social stress paradigm was used as another
experimental challenge known to increase glycemia through

FIGURE 2 | Insulin tolerance test (ITT) in WT and GCLM-KO mice. Data

are expressed as mean ± SD. Repeated-measure ANOVA showed a

significant within-subject effect of time [F(5, 17) = 93.229; p < 0.001], and a

significant interaction between Time and Genotype [F(1) = 3.559; p = 0.008]

*p < 0.05; **p < 0.001 vs. other genotype; ¶¶¶p < 0.001 vs. same genotype

at time = 0.

FIGURE 3 | Plasma glucagon levels in WT and GCLM-KO mice 60min

after insulin injection. Data are expressed as mean ± SD.
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mobilization of hepatic glycogen. Before stress induction,
plasma glucose levels were lower in KO compared to WT
(Figure 4A; −15.5%; p = 0.043). After stress, plasma glucose
levels were increased in both WT (1.26-fold increase; p < 0.001)
and KO mice (1.25-fold increase; p < 0.001), but the difference
between the two genotypes remained the same (Figure 4A;
−13.3%; p = 0.034). These results show that during an acute
social stress, GCLM-KO mice are unable to increase glycemia at
the same levels as WT mice.

Levels of the stress hormone corticosterone (CORT), which
elevation mediates the stress-induced increase in glycemia, were
measured before stress, immediately after stress, as well as 60min
after stress induction. At baseline, CORT levels were similar
in WT and KO mice (Figure 4B). These levels were higher
immediately after the stress period in bothWT (8.4-fold increase;
p < 0.001) and KO (7.5-fold increase; p < 0.001), with higher
values in KO when compared to WT mice (+24%; p = 0.043).
Sixty minutes after the end of the stress, CORT levels showed
no more difference with baseline in WT, while they were still

FIGURE 4 | (A) Glycemia in WT and GCLM-KO mice before and after a

30-min resident-intruder stress. (B) Plasma corticosterone levels in WT and KO

mice before, immediately after the stress and 60min later. Data are expressed

as mean ± SD. CORT levels were higher just after the stress period in both

WT (8.4-fold increase; p < 0.001) and KO (7.5-fold increase; p < 0.001).

*p < 0.05 vs. other genotype; ¶¶¶p < 0.001 vs. same genotype immediately

before stress induction (baseline). §§p < 0.01 vs. same genotype at baseline.

higher in KO (p = 0.004).In summary, during acute stress,
although the stress-induced hormonal response was stronger in
GCLM-KO mice compared to WT mice, glycemia in KO mice
did not rise as high as in WT. The negative feedback control of
CORT was not as robust in KO mice. Thus, overall, this result
is more consistent with the hypothesis of alterations in glycogen
stores rather than with an impaired ability of effector pathways to
mobilize glucose from glycogen. To test this hypothesis, glycogen
levels were measured.

Lower Hepatic Glycogen Content in
GCLM-KO Mice
Hepatic glycogen content was measured in mice after a 4 h
fasting period. Consistent with our hypothesis, GCLM-KO mice
showed a strikingly lower glycogen hepatic content compared to
WT (−48.7%; p = 0.008; Figure 5).

DISCUSSION

The present study shows that GCLM-KO mice present with
lower plasma glucose and insulin levels, and a reduced ability
to increase plasma glucose in response to insulin-induced
hypoglycemia or to acute stress. These metabolic alterations are
associated with lower levels of hepatic glycogen when compared
to WT mice.

During the first 30min of the ITT, the decrease in glucose
in response to insulin was comparable between the two
genotypes suggesting normal insulin sensitivity. After 60min,
when glycemia started to increase back to baseline level in WT
mice, it remained lower in KO mice. As the half-life of insulin
is about 10min in mice (Cresto et al., 1977), late differences in
glucose concentration between groups (beyond 30min after the
insulin bolus) are not likely to reflect alterations in insulin action
(Ayala et al., 2010). Thus, ITT results do not speak in favor of
abnormal insulin sensitivity, as opposed to the impaired insulin
sensitivity previously observed in other models of impaired
GSH homeostasis (Paolisso et al., 1992; Nwose et al., 2006; Loh
et al., 2009). It can be hypothesized that animals presenting
chronic low antioxidant capacity have developed compensatory

FIGURE 5 | Hepatic glycogen levels in WT and GCLM-KO mice. Data are

expressed as mean ± SD. **p < 0.001.
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mechanisms to prevent such a metabolic dysregulation. Our ITT
results also suggest that GCLM-KO animals display impaired
counterregulatory mobilization of glucose from endogenous
stores.

Compromised counterregulatory response to hypoglycemia
could be due to the decrease in counterregulatory hormones
released. In response to low plasma glucose levels,
catecholamines, pancreatic glucagon, growth hormones,
and cortisol are released, resulting in a stimulation of hepatic
glycogenolysis (For a review see Amiel, 1991). Plasma levels of
glucagon, the most important hormone involved in achieving
recovery of glucose levels following acute hypoglycemia
(Rizza et al., 1979), were similar in WT and KO mice 60min
after insulin injection (time when WT mice had started to
normalize their glycemia). This indicates that the hormonal
counterregulatory response to hypoglycemia is normal in KO
mice. It cannot be excluded that glucagon signaling, or the
activity of other hormones involved in the counterregulation
may be compromised in these mice.

Compromised counterregulation might stem from an
alteration in glycogen stores. Supporting this hypothesis is the
observed lower hepatic glycogen levels found in KO compared
to WT mice. Interestingly, in cultures of astrocytes from the
GCLM-KO mice, lower basal glycogen levels and a decrease in
its mobilization after an oxidative stress were observed when
compared to astrocytes from WT mice (Lavoie et al., 2011). In
vivo, already after 2 or 3 h of food removal, hepatic glycogen
is usually reduced in mice (Baker and Huebotter, 1972; Seyer
et al., 2013), meaning that hepatic glycogen is required for
maintenance of euglycemia even shortly after food removal.
Thus, lower glycogen availability and/or mobilization could be
responsible for the impaired counterregulatory response during
experimental hypoglycemia in KO mice. How the lack of GCLM
leads to a deficiency of hepatic glycogen remains unclear.

Consistent with the role of altered hepatic glycogen stores in
the counterregulatory response, the hepatic glycogen-dependent
hyperglycemic response to social stress was also altered in
GCLM-KOmice. When a physical or psychological stress occurs,
the hypothalamic-pituitary-adrenal (HPA) axis is activated,
leading to an increase in circulating glucocorticoids (For a review
see Chrousos and Gold, 1992) that are known to modulate
glucose metabolism. Our results clearly show that after a stress
induced by the presentation of an intruder mouse for 30min,
CORT levels increased considerably in both WT and KO mice.
Interestingly, the stress-induced hormonal response was stronger
in GCLM-KO mice compared to WT mice indicating that the
negative feedback control of CORT was less efficient in KO
mice. However, the higher CORT levels in stressed KO mice
did not lead to higher glycemia in these mice as compared to
stressed WT mice. Therefore, even though the CORT response
was supranormal, the stress-induced hyperglycemia itself appears
to be compromised. This observation is in line with the
hypothesis of the importance of reduced glycogen availability
in the alteration of glucose homeostasis in KO mice although
further studies to establish causality are warranted.

Finally, it is worth noting that this study reveals another
physiological dysregulation/adaptation in GCLM-KO mice,
namely an attenuated negative feedback regulation of CORT,

which was also observed following a synthetic cortisol
(dexamethasone) injection (unpublished observation). This
observation is similar to the attenuated hormonal negative
feedback response reported in patients with schizophrenia
or bipolar disorder when pharmacologically challenged with
dexamethasone (Mück-Šeler et al., 1999; Watson et al., 2004).
It has been shown that oxidative stress induced by hyperoxia in
rats led to a loss of glucocorticoid receptors in the hippocampus
resulting in an elevation of the HPA activity due a decrease in the
feedback regulation of the HPA axis (Kobayashi et al., 2009).

GCLM-KO mice present with chronically low GSH levels
and increased oxidative stress markers levels. Knowing that
the end result of glucose metabolism is accompanied by the
production of reactive oxygen species, it has been postulated
that adaptation toward oxidative stress in GCLM-KO mice may
partly involve a constraint/limitation of glucose utilization and
glycogen mobilization when an oxidative challenge is already
monopolizing the GSH system (Lavoie et al., 2011). On the
other hand, GCLM-KO mice present with lower weight, plasma
glucose and insulin and hepatic glycogen levels compared to
WT, observations consistent, among other possibilities, with
a faster metabolism (Kendig et al., 2011). In this case, more
ROS would be produced which would put more burden on the
already deficient antioxidant system of the GCLM-KO, unless
these mice switched from glycolysis (production of ROS) to the
pentose phosphate pathway (generation of NADPH) as suggested
by Ralser et al. (2007). In the light of the current literature,
it remains unclear which energy pathway is favored by mice
showing chronic oxidative stress, but it has been suggested that
NADPH generation may be a more efficacious therapeutic target
upstream of GSH and ROS (Ghosh et al., 2014).

CONCLUSION

Our results indicate that GCLM-KO mice do not show impaired
sensitivity to insulin contrary to other GSH-deficient mouse
models. The GCLM-KO mice presented with reduced liver
glycogen availability that could be at the origin of their lower
basal and challenged glycemia, even in the present of normal
levels of hyperglycemiant hormones (i.e., glucagon following
insulin-induced hypoglycaemia and corticosterone following
acute social stress). Further studies are warranted to assess the
direct association between the deficit in GSH associated with
GCLM targeted deletion and glycogen storage not only in the
liver but also in other organs in both fed and fasted conditions.
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