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Redox dysregulation, neurodevelopment, and schizophrenia
Kim Q Do, Jan H Cabungcal, Anita Frank, Pascal Steullet and

Michel Cuenod

In schizophrenia, a developmental redox dysregulation
constitutes one 'hub’ on which converge genetic impairments
of glutathione synthesis and environmental vulnerability factors
generating oxidative stress. Their timing at critical periods of
neurodevelopment could play a decisive role in inducing
impairment of neural connectivity and synchronization as
observed in schizophrenia. In experimental models, such redox
dysregulation induces anomalies strikingly similar to those
observed in patients. This is mediated by hypoactive NMDA
receptors, impairment of fast-spiking parvalbumin GABA
interneurons and deficit in myelination. A treatment restoring
the redox balance without side effects yields improvements of
negative symptoms in chronic patients. Novel interventions
hased on these mechanisms if applied in early phases of the
disease hold great therapeutic promise.
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Introduction

Schizophreniaisachronic, devastating, and costly mental
illness affecting about 1% of the world population. It
develops progressively, often undetected during child-
hood and adolescence in a premorbid phase, leading to
the onset of psychosis at early adulthood. While present
antipsychotic treatments are effective against positive
symptoms (delusions, hallucinations, and thought
disorder), they have significant side effects and are
almost ineffectual for negative (deficits in social abilities
and speech, affective flattening) and cognitive symptoms
(attention, memory, and executive functions) and
perceptual instability (basic symptoms).
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Converging evidence suggests that schizophrenia is a
developmental syndrome involving faulty connectivity
deriving from multiple genetic and environmental factors
[1,2°] that set off a cascade of events extending into
adulthood [3,4]. Anatomical findings point to a highly
distributed underlying neuropathology. It is necessary to
identify ‘hubs’ or ‘final common pathways’ leading to
various phenotypes [2°]. The present review focus on
glutathione (GSH) deficit/redox dysregulation/oxidative
stress being such *hub’ candidate, not excluding other
potential hubs.

Oxidative and nitrosative stress result from an imbalance
between overproduction of reactive oxygen species
(ROS), and reactive nitrogen species (RNS) on one side
and deficiency of enzymatic and nonenzymatic antiox-
idants on the other side. This leads to deleterious (per)-
oxidations of lipids, proteins, and DNAs [5°]. ROS
include superoxide (O;°7), hydrogen peroxide (H;O;),
hydroxyl radical (*OH), and peroxyl radical (ROO®),
while RNS include nitric oxide (NO®) and the highly
toxic peroxynitrite (ONOO™). The defense systems
against oxidative and nitrosative stress consist of enzymes
such as superoxide dismutase, glutathione peroxidases,
catalase and of nonenzymatic antioxidants which include
GSH, ascorbic acid (vitamin C), a-tocopherol (vitcamin E),
carotenoids, and flavonoids. The brain is particularly
vulnerable to oxidative damage because of its high ox-
ygen utilization, its high content of oxidizable polyunsa-
turated fatty acids and the presence of redox-active
metals (Cu and Fe).

The tripeptide GSH (y-glutamyl-cysteine-glycine),
abundant in the cytosol (1-11 mni), nuclei (3—=15 mar),
and mitochondria (5-11 mum), is the major thiol antiox-
idant and redox buffer of the cell. GSH maintains the
redox state of critical protein sulfydryls that are necessary
for redox-sensitive processes [6°°] such as cell cycle
regulation and cell differentiation [7], receptor activation
(e.g. NMDA recepror [8]), signal transduction, and tran-
scription factor (c.g. Nrf-2 and NF-«kB). The main pro-
tective roles of GSH against oxidative stress arce: firstly,
GSH is a cofactor of several detoxifying enzymes against
oxidative stress, for ecxample glutathione peroxidase,
glutathione transferase, and others [9°]; secondly, GSH
scavenges hydroxyl radical and singlet oxygen directly,
detoxifying hydrogen peroxide and lipid peroxides by the
catalytic action of glutathione peroxidase; thirdly, GSH is
able to regenerate the most important antioxidants, vita-
mins C and E, back to their active forms. This capacity is
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Gonvergence of genetic and environmental factors on redox system in schizophrenia pathophysiology. {a) Environmental risk factors for schizophrenia
can cause transient or even long-term redox dysregulation in the brain and peripheral tissues (see Supplementary table 14). Such environmentally induced
redox dysregulation when combined with a genetic susceptibility (e.g. 'high-risk’ polymorphism of GCLC, the gene coding for the catalytic subunit of
glutamate cysteine ligase (GCL)) could lead to the disruption of normal brain development and maturation. For instance, redox dysregulation can impair the
development of parvalbumin-immunoreactive (PV-IR) interneurons and oligodendrocytes. The resulting decrease in number of functional fast-spiking
interneurons and myelination would affect the structural and functional connectivity in the brain and contribute to the development of schizophrenia-
related symptoms. (b) Redox dysregulation affects fast-spiking interneurons. A decrease in GSH levels and/or increase in ROS lead(s) to NMDAR
hypofunction [39]. The NR2A subunit is particularly sensitive to the thiol redox status [38] and plays a pivotal role in the maintenance of the function of PV
interneurons [48°]. In addition, NMDAR hypofunction has been recently shown to increase levels of interleukin-6 (IL-6), followed by an increase in NADPH
oxidase (NOX) activity and superoxide production that ultimately affects normal expression of PV [49°°,50%]. The production of superoxide might further
enhance the oxidative stress, particularly in subjects with a genetic susceptibility associated with antioxidant systems. The high expression of PGC-1a, a
coactivator of peroxisome proliferator activated receptors y (PPARY), in GABAergic interneurons during postnatal development and adulthood [51]
suggests that PPARy could help counteract this mechanism via inhibition of IL-6 and superoxide scavenging by upregulation of superoxide dismutase.
(c) Redox dysregulation affects myelination. Oxidative conditions have been shown to increase Fyn activity leading to a decrease in platelet-derived
growth factor receptor-a (PDGFR-a)-mediated signaling and a decrease in proliferation of oligodendrocyte precursors [31**]. In addition, ROS and
cytokines inhibit PPAR«-dependent peroxisome function known to be essential for oligodendrocyte maturation and myelination [27°]. PPARy, B/8-
dependent pathways that are implicated in the oligodendrocyte differentiation and myelination could also protect against excessive oxidative stress via
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linked with the redox state of the glutathione disulfide—
glutathione couple (GSSG/2GSH). Thus GSH deficiency
induces oxidative stress, leading to deleterious (per)oxi-
dations of lipids, proteins, and DNAs, altering lipid
metabolism and affecting mitochondrial function.

In schizophrenia, we propose that developmental dysre-
gulation of GSH synthesis of genetic origin, when com-
bined with environmental risk factors generating
oxidative stress, can play a critical role in inducing deficits
in neural connectivity and synchronization observed in
the discase (Figure la). This would be mediated by
hypoactive NMDA receptors (NMDA-Rs), developmen-
tal impairment of fast-spiking parvalbumin (PV) GABA
interneurons (Iigure 1b), and anomalies in myelination
(Figure lc).

Causes of redox dysregulation and oxidative

stress

Genetic impairment of GSH synthesis

In schizophrenia, impaired antioxidant defense systems
and increased lipid peroxidation have been reported in
peripheral tissues and postmortem brain of schizophrenia
patients [10-13]. However the variability in these results
highlights the contribution of diverse genotypes and
tissues studied [14°]. It remains unclear whether this
oxidative stress is due to excess of ROS or to deficit in
antioxidant mechanisms or a combination of both, We
propose here that a primary genetic defect of GSH
synthesis is at the origin of the failure of antioxidant
defenses in schizophrenia. This implies the involvement
of a critical neurodevelopmental component in schizo-
phrenia when compared with neurodegenerative dis-
orders. Indeed there is also increasing evidence for the
involvement of oxidative stress induced cellular damage
in the pathogenesis of various neurodegenerative diseases
such as Parkinson’s (PD), Alzheimer’s (ALZ), and Hun-
tington’s (HD) diseases. However in these cases, ROS/
RNS increase and GSH depletion appear to be down-
stream consequences of other primary causes (such as i.e.
mitochondrial complex I dysfunction in PD, amyloid-
peptide toxicity in ALZ, and huntingtin-related mito-
chondrial dysfunction in HD) [5°].

A genetic origin for redox dysregulation was first demon-
strated through the association of schizophrenia with
various polymorphisms in the key genes for GSH syn-
thesis, namely the rate limiting enzyme glutamate
cysteine ligase (GCL) composed of two subunits: cataly-
tic (GCLC, 73 kDa) and modulatory (GCLM, 30 kDa).
T'wo single nucleotide polymorphisms (SNPs) of GCLM
[15] and a GAG-trinucleotid repeat (GAG-TNR) of
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GCLC genes [16°], were associated with schizophrenia
(Figure 2b,c). In two case—control studies, totalizing now
570 patients and 797 controls, the GCLC genotypes 7/7
and 7/9 TNR are more frequent in controls (‘low-risk’
genotypes), while 8/7, 8/8, 8/9, and 9/9 are more frequent
in paticnts (high-risk). The ‘high-risk’ genotypes arc
present in 35-40% of patients. In skin fibroblast cultures
under oxidative stress conditions, ‘high-risk’ compared to
‘low-risk’ subjects have lower GCLC gene and protein
expression, GCL activity, and GSH levels, demonstrating
that GAG-TNR wvariants are associated with dysfunc-
tional regulatory mechanisms [16°] (Figure 2d). This is
consistent with the decreased GSH levels in CSF and in
medial prefrontal cortex (PFC) in vivo [17] (see also [18°],
Figure 2a), as well as in postmortem striatum [11].
Furthermore, ‘high-risk’ genotype patients have lower
plasma GSII levels and higher oxidized cysteine levels
than ‘low-risk’ ones (unpublished data), pointing to
generalized oxidative systemic conditions [13].

Furthermore, other susceptibility genes also induce an
oxidative state: a positive association with schizophrenia
has been found for SNPs in PRODH which increases the
proline oxidase activity [19], promoting ROS generation

[20].

Finally, we propose that redox dysregulation could also
affect epigenetic processes [21] through dysregulation of
DNA methylation via methionine and the fraus-methyl-
ation pathway. Indeed, under oxidative stress conditions,
methionine synthase is inactivated, allowing homocys-
teine to be shunted into the #rans-sulfuration pathway
favoring GSH synthesis [22]. However, in case of
impaired GSH synthesis in ‘high-risk’ genotypes, both
trans-methylation and #rass-sulfuration pachways could
be depressed [14°], leading to perturbations of the DNA
methylation process and increase in homocysteine levels
as often observed in schizophrenia [23].

Taken together, these results provide evidence that
polymorphisms in the key GSH synthesizing genes
assaciated with schizophrenia lead to redox dysregulation
favoring deleterious consequences of oxidative and nitro-
sative stress.

Environmental factors generating oxidative stress

Various established environmental risk factors [2°] are
known to induce oxidative stress (Supplementary Table
1). These would be particularly damaging when com-
bined with a genetically deficient regulation of redox
system. Impacts during early development may become
apparent only in adulthood.

(Figure 1 Legend Continued) upregulation of superoxide dismutase [66%]. The proposed mechanisms for the redox dysregulation-induced decrease in
functional fast-spiking interneurons and in myelination involve inflammation-related signaling. In addition, many environmental risk factors (infections,
obstetrical complications such as hypoxia, psychological stress, and brain trauma) induce redox dysregulation and inflammatory processes, suggesting
that both processes are tightly linked and together can impair normal brain development.
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Figure 2
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Clinical studies indicate involvement of glutathione (GSH) dysregulation in schizophrenia. (a) GSH levels are lower in schizophrenia patients ( filled bars)
than in controls (open bars), measured in cerebrospinal fluid by liquid chromatography-mass spectrometry (LC-MS) (left panel) and in medial prefrontal
cortex by magnetic resonance spectrometry (MRS) (right panel) (adapted from [17]). Left panel: mean + sk; right panel: mean and individual data (symbols).
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Early insults include malnutrition, exposure to toxins,
maternal infection, obstetrical complications (pre-
cclampsia and hypoxia), and maternal or carly-life stress
[24,25]. Globally, in both human and animal models, they
lcad to increase in ROS gencration, lipid, protein, and
DNA (per)oxidation, and decrease in GSH and antiox-
idant defense system (Supplementary Table 1A). They
also lead to increased inflammation [26,27°], emphasizing
the tight link between inflaimmation and oxidative stress.
Emerging evidence suggests that the precise timing of
prenatal infection may influence the specificity of its
structural and functional delayed consequences: infection
occurring in early/middle pregnancy leads to reduced
prefrontal D1 receptors, deficit in spatial exploration,
sensorimotor gating, and selective associative learning,
while immune challenge at late gestation leads to reduced
hippocampal NMDA-R subunits and impairment in
reversal learning and spatial working memory [28,29].
Interestingly, the antioxidant N-acetyl cysteine (NAC)
prevents the deleterious delayed consequences of a pre-
natal inflammation [27°,30]. Environmental toxins such as
methyl mercury, lead, and paraquat (herbicides) increase
oxidative status and disrupt mitogenic signaling of oligo-
dendrocyte precursors [31°°].

Late environmental factors that dysregulate the redox sys-
tem include malnutrition, brain trauma, and stress during
childhood, adolescence, and adulthood. Although evi-
dence in humans is still sparse, psycho-social stresses
lead to GSH deficieney and lipid, protein, and mitochon-
dria damage as demonstrated in restraint stress rodents
[32]. Redox dysregulation induced by numerous environ-
mental factors or manipulation of redox systems also lead
to diverse behavioral alterations at adulthood, including
cognitive, social, and emotional impairments (Supple-
mentary Table 1B).

Any of those environmental insults could worsen a fragile
redox equilibrium and, depending on the phase of brain
development when they occur, could prevent normal
maturation processes, resulting in defective connectivity
between various brain regions, including the midbrain,
nucleus accumbens, thalamus, temporo-limbic, and
PIFCs, all involved in schizophrenia [33]. GSH deficiency
thus appears to be a key element in the ‘redox dysregula-
tion hub’ on which various genetic and environmental risk
factors converge to perturb brain maturation with delayed
functional consequences in carly adulthood.

Redox, development, and schizophrenia Do etal. 5

Consequences of redox dysregulation and
oxidative stress

Exposure to oxidative stress at various developmental
stages affects at least two essential cerebral processes that
are dysfunctional in schizophrenia (Figures 1 and 3):
firstly, NMDA-R hypofunction, mediating impairment
of PV fast-spiking GABAergic interneurons (IFSGIs),
crucial for synchronization activity and secondly,
deficient myelination. The interaction with dopaminergic
systems is discussed in Figure 3d [34°].

Converging evidence points to NMDA-R hypofunction in
schizophrenia [35-37]. NMDA-Rs, through redox-sensi-
tive active sites, are depressed under oxidizing conditions
[8,38]. GSH deficit leads to decreased NMDA-R response
and LL'TP [39] (Figure 3c). In addition, the intrasynaptic
activation of NMIDA-R upregulates various antioxidant
systems, including thioredoxin—peroxiredoxin systems
[40°°] suggesting that NMDA-R hypofunction might
further contribute to cellular oxidative stress. Indeed
NMDA-R antagonists induce a rapid increase in ROS [41].

In patients postmortem tissues, PV immunoreactivity
(PV-IR) of FSGI is decreased in layers III-IV of PIFC,
anterior cingulate cortex, and hippocampus [42,43].
Immunoreactivity of GABA, its synthesizing enzyme
GADG7 and its transporter GAT are also decreased,
leading to excitatory—inhibitory imbalance [44]. Similar
alterations were observed following application of
NMDA-R antagonists [45,46]. We observed decreased
PV-IR in anterior cingulate but not somatosensory cortex
of rodents with transitory GSH deficit from postnatal day
5 to 16 [47°] (Figure 3b). It thus appears that redox
dysregulation induces impairment in FSGI, particularly
during brain development. The NMDA-R hypofunction-
induced FSGI defect is mediated by IL6, which in turn
activates NAPDH  oxidase (NOX) (Figure 1b)
[48°,49°° 50°]. The latter produces ROS, which should
be particularly toxic when combined with a GSH deficit
of genetic origin. PGC-1a, a coactivator of peroxisome
proliferator activated receptors vy (PPARy), is also
involved via its influence on GABAcrgic signaling and
survival, and antioxidant defense mechanisms [51], (EK
Lucas, abstract in Soc Newrosci Abstr 2008, 747.7). Indeed,
the high expression of PGC-la in GABAecrgic inter-
ncurons during postnatal development and adulthood
[51] suggests that PPARy could help counteract this
mechanism via inhibition of 1L.-6 and superoxide scaven-

{(Figure 2 Legend Continued) *P < 0.05. (b) Schematic representation of the GCLC gene. Vertical black bars represent the exons. Position of the 5’-UTR
GAG-TNR polymorphism is upstream of the start codon (bowed arrow). (¢) GCLC GAG-TNR polymorphism in both Swiss (left panel) and Danish

(right panel) samples shows a significant difference between the genotype distribution of controls and patients [X*-test with a 2 x 6 contingency table
(controls and patients x genotypes 7/7, 7/9, 8/7, 8/8, 8/9, and 9/9)]. ‘High-risk’ genotypes (8/7, 8/8, 8/9, and 9/9; gray dotted box) are presentin about 38%
of patients. For each genotype, number of individuals (N}, % and statistical comparison between controls and patients [with odd ratio (OR), 95%
confidence interval (Cl), and P-values] are given (adapted from updated [16°)). (d) Functional relevance of the GCLC GAG-TNR polymorphism in the Swiss
sample. In fibroblasts, GCLC protein expression (feft panel), GCL activity (middle panef), and GSH content (right panel) are lower in *high-risk’ (8/7, 8/8, 8/9,
and 9/9; dark box) than 'low-risk’ genotypes (7/7 and 7/9; light box). Each box plot depicts 25%, 75%, and median values. The error bars show values in

the 1.5 box lengths range. *P < 0.05 and **P < 0.01 (adapted from [167)).
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Figure 3
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In experimental models, low GSH induces structural, physiological, and behavioral anomalies. (a) The density of spines on the apical dendrites of layer
Il pyramids in the anterior cingulate (AC) is reduced in low GSH + GBR rats (treated with BSO, a GSH synthesis inhibitor, and GBR, a DA reuptake
inhibitor which increases local DA levels, mimicking the impact of environmental stress) compared to normal GSH rats (PBS ‘control’ treated). Rats
were treated between postnatal days P5 and P24 and spines quantified at P24. In the box plot, filled bars represent low GSH rats, open bars represent
normal GSH rats. Each bar depicts 25 and 75% values; the horizontal line shows the median. **P < 0.01. Photomicrographs illustrate Golgi stained
layer Ill dendrite of a pyramid in the AC of normal GSH (upper panel) and low GSH rats (lower panel) (F Gheorghita, in preparation). (b) The number of
parvalbumin-immunoreactive (PV-IR) profiles in AC is reduced in low GSH rats (treated with BSO and GBR) compared to normal GSH rats (PBS

‘control’ treated). Rats are treated between postnatal days P5 and P16 and PV-IR quantified at P16. In the box plot, filled bars represent low GSH rats,
open bars represent normal GSH rats. ***P < 0.001. Photomicrographs illustrate PV-IR profiles in the AC from rats with normal GSH (left panel) and low
GSH (right panel) (adapted from [47°])). (c) Low GSH levels cause NMDAR hypofunction (left panel) and a concomitant impairment of high frequency
stimulation-induced long-term potentiation in hippocampus (right panel) (adapted from [39]). (d) Low intracellular GSH levels alter dopamine (DA)

modulation of NMDA-mediated calcium response in cortical neurons. DA decreases NMDA response in low GSH, while the same DA concentration
(1 pm) enhances NMDA response in neurons with normal GSH (left panel). Blocking D2-type receptors with sulpiride (SUL) prevents DA-induced

decrease of NMDA in low GSH neurons (right panel). This suggests that antipsychotics, as D2 antagonists, might prevent such negative modulation of
the NMDA responses. The effect of a GSH deficit on DA modulation of calcium response was due to an alteration of DA modulation of L-type-calcium
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ging by upregulation of superoxide dismutase. Thus
converging findings point to a key role of redox dysregu-
lation in anomalies of FSGI, particularly in anterior cor-
tical areas. We also observed spine density decreases in
the latter’s layer I pyramidal cells (Figure 3a), possibly
related to the rich innervation by DA whose metabolism
generates ROS, thus further contriburing to oxidative
damage [52].

There is increasing evidence that schizophrenia is associ-
ated with abnormalities in local-range and long-range
synchronization activity in the beta (13=30 Hz) and gamma
(30-80 Hz) frequency ranges [53,54]. This induces func-
tional disconnectivity in cortical networks during percep-
tual and cognitive processes [55,56]. FSGI exert powerful,
long-lasting, and locally spreading inhibition and thus are
critically involved in the functional cortical circuitry
responsible for gamma band synchronization and EEG
oscillations during sensory integration and cognitive tasks
[44,57,58°°]. Interestingly, we observed reduced number
of PV-IR interneurons and decreased kainate-induced «y-
oscillations in the hippocampus of ge/m—/— mice that
have a 70% decrease in brain GSH (P Steullet et af.,
abstract in Soc Newrosci Abstr 2008, 657.4). These mice also
display hyperactivity, stronger response to acute stress,
alterations in social behavior, and deficiency in object
memory (A IFrank ef /., abstract in Soc Newrosci Abstr 2008,
657.7; see also [59,00,61]). Overall, FSGI impairments
induced by redox dysregulation may play an important
role in the decreased vy-oscillations power leading to
various schizophrenia phenotypes, depending on the
specific neural circuitries impaired.

Recent evidence from gene expression profiling, neuro-
cytochemical, and ncuroimaging studies points to the
impairment  of eligodendroglia-mediated  myelination in
schizophrenia  [62,63]. This process is particularly
affected by redox regulation [64]. Oligodendrocytes
and their progenitor cells are also highly sensitive to
oxidative stress [65]. Oxidative conditions decrease cell
proliferation through the disruption of mitogenic sig-
naling involving Fynl and PDGFRa, leading to oligo-
dendrocyte deficits and myelination anomalies [31°°].
PPARs-mediated pathways might be protective through
their antioxidative actions and their role in oligodendro-

Redox, development, and schizophrenia Do etal. 7

cyte maturation [27°,66%] (Figure 1c). A deficit in mye-
lination would influence axonal conduction velocity and
thus disrupt precise synchronizacion. It would also impact
on pathways essential for intermodal sensory integration
and ‘binding’ processes, underlying the cognitive and
negative symptoms [56]. As cortical myelination con-
tinues through late adolescence for the temporal and
prefrontal regions, its deficit could be related to the
delayed onsct of the disease to early adulthood. Interest-
ingly, the myelin marker MBP (myelin basic protein) is
also decreased in gelm—/— mice (JH Cabungcal e af.,
abstract in Soc Newrosei Abstr 2008, 657.14),

In view of the role played by FSGI and myelination
impairments in schizophrenia, it is tempting to speculate
in analogy to the visual system that similar erizical period
in cortical areas of the anterior forebrain and their corre-
sponding functions might be perturbed by redox dysre-
gulation. Indeed, in the monocular deprivation model of
the visual system, the critical period for plasticity relies
on both PV FSGI maturation for its initiation and on
myelin-derived Nogo receptor signaling for its termin-
ation [67,68°°,69], (H Morishita et @/, abstract in Soc
Newrosei Abstr 2008, 28.5). Interestingly, the antidepress-
ant fluoxetine, efficient in the functional recovery of
acuity [70], has been shown to upregulate the antioxidant
system [71]. Also efficient is the treatment with chon-
droitinase ABC [72] which degrades the extracellular
matrix structures called perineuronal nets (PNNs).
The latter enwrap PV cells, the maturation of which
triggers the endogenous critical period. We observed
in gelm—/— mice that GSH deficit led to a delayed
appearance of both PV and PNN immunoreactivity in
PIFC (JH Cabungcal ef @/., abstract in Soc Newrosci Abstr
2008, 657.14). In this context, in analogy to amblyopia
pathophysiology, schizophrenia could be related to a
delay/deficiency in initiation and closure of specific
critical period. Moreover, as the subtype specification
of cortical interneurons depends on both the spatial and
temporal origin of their precursors in the developing
telencephalic eminences [73], the timing of various
environmental insults during development (early,
middle, end of pregnancy, or postnatal) may lead to
distinct impact on different interneuron subtypes. Inves-
tigation on experimental models with genetic redox

(Figure 3 Legend Continued) channels [34°]. Because calcium signaling via NMDAR [44] and L-type calcium channels [79] and dopamine signaling
mostly via D2R [80] promote PV maturation, it is tempting to speculate that a deficit in GSH might also affect PV maturation via alteration of DA
modulation of calcium signaling. In addition, the postpubertal emergence of DA-induced excitability of PFC interneurons via D2R [81] might be also
compromised by a redox dysregulation affecting DA-modulation of L-type calcium channels. Finally, an enhanced discharge of hippocampal
pyramidal neurons, because of FSGI impairments, could overstimulate ventral tegmental DA neurons, inducing an increased cortical DA liberation [44].
Data are presented as the mean + sg, *P < 0.05 (adapted from [34°]). (e) A transitory GSH deficit during early brain development (postnatal days P5—
P16) impairs visuo-spatial learning of juvenile rats in the water maze. Mean (£sg) time spent swimming in four equivalent zones (training zone: Tr; other
zones: Tr — 1, Tr + 1, Opp) during three 60-s probe trials of place and cue condition in normal GSH (PBS-treated, left panel) and low GSH rats (BSO-
treated, right panel). The arrow indicates the nonsignificant difference time spent in the training zone versus the other zones. *P < 0.05 (adapted from
[59)). () A transitory GSH deficit during early brain development does not affect visuo-spatial learning in the homing board in aduit rats (left panels), but
significantly impairs olfactory discrimination (right panels) when the homing table is baited with five olfactory cues placed in five different zones. Mean
(+sE) time spent in five equivalent zones (Tr: trained zone; other zones: Tr + 1, Tr+ 2 Tr — 2, Tr — 1) during the 120-s probe trial. The arrow indicates the
nonsignificant difference time spent in the training zone versus the other zones. *P < 0.05 (adapted from [59]).
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dysregulation combined with environmental stressors
applied at various development stages should contribute
to test this hypothesis.

Therapeutic perspectives

A proof-of-concept has been provided by a clinical trial
with the GSH precursor NAC [74]. NAC, given as add-on
treatment to antipsychotics in a double-blind placebo-
controlled study, increased GSH plasma levels, improved
negative symptoms, and reduced side effects (akathisia) in
chronic patients [75]. NAC was also effective in improving
mismatch negativity (MMN) [76], an auditory-related,
NMDA-dependent evoked potential typically impaired
in schizophrenia [77]. This is encouraging since present
antipsychotic treatments are rather ineffective against
cognitive and negative symptoms and have no effect on
MMN, a preattentional component that is proposed to gate
some cognitive and functional modules [78].

Conclusion

Redox dysregulation may constitute a ‘hub’ where
genetic and environmental vulnerability factors converge
and their timing during neurodevelopment could play a
decisive role on some schizophrenia phenotypes. In
experimental models, such redox dysregulation induces
anomalies strikingly similar to those observed in patients.
A treatment restoring redox balance, deprived of side
effects, yields improvements in chronic patients. Its
application during early psychosis and prodromal phase,
intended to halt pathological developmental processes is
promising. The proposed mechanisms should provide
biomarkers for an ecarly detection, paving the way for
prevention perspectives.
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Supplementary material

Table 1
A Insult Time of Tissue GSH and AOX Oxidative Recovery References
insult stress
Inflammation E10.5 BR GSH { ROS T 1
LPS 4 months AOX altered
E18-19 BR, LI GSH . (normal at PD2) ROS T N-acetyl cysteine | [2-4]
E19-20 Peroxisome 4
Hypoxia PD7 BR GSH ! ROS T GPX T [5-8]
PD8, 14 Protein thiol | Edaravone
Pregnancy | BL, CF GSH{ ROS T [9, 10]
b 26-41 wks AOX altered
= Preeclampsia Pregnancy | BL, PLAC GSH —» ROS T [11-13]
§ 38 wks-birth AOX altered, selenium 4
= Maternal diabetes Pregnancy |BR, LI GSH T (L), GSH . (BR) |ROS * [14]
% STZ-induced At day 1 PD1 AOX altered
o] Malnutrition Gestation and | BR PD21,62 | GSH — ROS — at PD21 [15]
: undernutrition pre-weaning AOX altered ROS T at PD&2
= o Gestation and | BR GSH | (normal at PD60) | ROS T [16, 17]
bl low protein diet pre-weaning | PD2,15 AOX altered
o Toxins Pregnancy |BR GSH | ROS T (18]
© mercury PD21 AOX altered
IS Prenatal + | BR GSH ! ROS 1 Epigallocatechin- | [19, 20]
@ lead PD1-21 AOX altered gallate
Infant BL GSH ! correlate with ROS T correlate [21]
lead 4-12 yrs lead T with lead T
: Prenatal + |BR GSH 4 ROS T [22]
pyrethroid PD1-30 PD31 AOX altered
Psychosocial stress E7-13 or BR ROS T [23]
restraint E14-20 PD30
PD2-14 BL ROS T [24]
maternal separation
Psychosocial stress Students BL AOX altered ROS T [25]
! examination
83 Young adult | BR GSH Y ROS T N-acetyl cysteine | [26]
50 restraint AOX altered a-tocapherol
oS _ Adult BR, LK, |GSH! ROS T NO inhibitors [27-29]
o _g restraint / cold HE AOX altered COX-2 inhibitors
8« Brain trauma Adult BR GSH 4 ROS T [30]
< 4 days AOX altered
posttrauma

Table 1. (A) Effects of environmental risk factors on GSH levels, antioxidant systems and oxidative stress.

Exposure to toxins, malnutrition, obstetrical complications such as hypoxia-ischemia and preeclampsia,

and

psychosocial stress imposed during pregnancy, childhood and adulthood can perturb the redox systems in brain

and peripheral tissues (i.e., decrease GSH levels and/or alter enzymatic antioxidant systems, and/or increase

oxidative stress). Some of these alterations in the brain prevail days or even months after the end of the insult

(orange cells). Light blue sections correspond to data collected in humans, while other sections relate to rodents.

Tissue abbreviations: BL = blood or plasma; BR = brain; CF = cerebrospinal fluid; HE = heart; KI = kidney; LI =

liver; PLAC = placenta. Measurements were done immediately after the insult unless mentioned. Embryonic day
and postnatal day are abbreviated respectively, E and PD. Other abbreviations: AOX: antioxidant systems
including activity of glutathione peroxidases (GPX), glutathione reductase, catalase and superoxide dismutases;
ROS: oxidative stress estimated by measuring either directly ROS levels, lipid peroxidation (LPO), protein

oxidation, or DNA oxidation.




Table 1

B Factor Manipulation Behavior(s) changed Recovery References
GSH synthesis BSO + Vitamin C . | Working memory (-) [31-33]
down-regulation (+DAT) Spatial learning / memory (-)
Object recognition memory (-)
Inflammation LPS Spatial learning / memory (-) N-acetyl cysteine | [4, 34]
® Sensory motor gating (-}
= Polyl:C Object recognition memory (-) Fluoxetine [35-38])
= Sensory motor gating (-)
o Stimulant-induced activity (+)
£ Exploratory behavior (-) (*)
4 Associative learning (-)
Q. Hypoxia Hypoxia Spatial learning / memory (-) Melatonin [39-42)]
= Sensory motor gating (-)
3 Exploratory behavior (-) (*)
o Social behavior (-)
= Toxins Lead Spatial learning / memory (-) [43, 44]
4 Social behavior (-)
L. Anxiety (+)
Pyrethroid Emotionally driven memory (-) [22]
Brain trauma Brain contusion Exploratory behavior (-) Resveratrol [45, 46]
Excitotoxic lesion Object recognition memory (-) Melatonin
Emotionally driven memory (-)
GSH synthesis BSO (+ DA T) Working memory (-) Ferulic acid [47-51]
down-regulation CHX Spatial learning / memory (-) Apocinin
Object recognition memory (-) Bay 60-7550
Stimulant-induced activity (-)
Exploratory behavior (-) (*)
Anxiety (+)
Elevation of oxidative | D-galactose Spatial learning / memory (-) Lipoic acid [62-55]
- stress quinolinic acid Emotionally driven memory (-) Tolmetin
0o Vitamin A Exploratory behavior (-) Sulindac
_8 Anxiety (+)
= GSH-related GRT Anxiety (+) Inhibition of (58]
ke glyoxalase 1
% PCP+ xCT Working memory (-) N-acetyl cysteine | [57]
manipulation Social behavior (-)
Psychosocial Stress 1-6h restrain Spatial learning / memory (-) N-acetyl cysteine | [26, 29, 57-59]
72h sleep Exploratory activity (-) Curcumin
deprivation Anxiety (+) Quercetin
COX-2 inhibitors
Brain trauma Brain contusion Spatial learning / memory (-) OPC-14117 [60, 61]
soD T

Table 1. (B) Effects of environmental insults or redox dysregulation on adult rodent behavior. Redox
dysregulation induced by environmental factors or manipulation of redox systems leads to diverse behavioral
alterations in adulthood, including cognitive, social and emotional impairments. Note that behavioral changes listed
for each factor were not necessarily observed in all studies. Symbols: (*) the behavior remained unaltered in one
or more studies; (+) enhanced or increased; (-) impaired or reduced. Abbreviations: BSO (buthionine sulfoximine);

CHX (2-cyclohexene-1-one); GR (glutathione

COX (cyclooxygenase); DA
(lipopolysaccharide); PCP (phencyclidine); Polyl:C (polyriboinosinic-polyribocytidilic acid); SOD (superoxide

dismutases); xCT (cystine-glutamate antiporter).
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